Evidence against a moving hill in the superior colliculus during saccadic eye movements in the monkey.
نویسندگان
چکیده
Saccadic eye movements of different sizes and directions are represented in an orderly topographic map across the intermediate and deep layers of the superior colliculus (SC), where large saccades are encoded caudally and small saccades rostrally. Based on experiments in the cat, it has been suggested that saccades are initiated by a hill of activity at the caudal site appropriate for a particular saccade. As the saccade evolves and the remaining distance to the target, the motor error, decreases, the hill moves rostrally across successive SC sites responsible for saccades of increasingly smaller amplitudes. When the hill reaches the "fixation zone" in the rostral SC, the saccade is terminated. A moving hill of activity has also been posited for the monkey, in which it is supposed to be transported via so-called build-up neurons (BUNs), which have a prelude of activity that culminates in a burst for saccades. However, several studies using a variety of approaches have yet to provide conclusive evidence for or against a moving hill. The moving hill scenario predicts that during a large saccade the burst of a BUN in the rostral SC will be delayed until the motor error remaining in the evolving saccade is equal to the saccadic amplitude for which that BUN discharges best, i.e., its optimal amplitude. Therefore a plot of the burst lead preceding the "optimal" motor error against the time of occurrence of the optimal motor error should have a slope of zero. A slope of -1 indicates no moving hill. For our 20 BUNs, we used three measures of burst timing: the leads to the onset, peak, and center of the burst. The average slopes of these relations were -1.09, -0.79, and -0.58, respectively. For individual BUNs, the slopes of all three relations always differed significantly from zero. Although the peak and center leads fall between -1 and 0, a hill of activity moving rostrally at a rate indicated by either of these slopes would arrive at the fixation zone much too late to terminate the saccade at the appropriate time. Calculating our same three timing measures from averaged data leads us to the same conclusion. Thus our data do not support the moving hill model. However, we argue in the DISCUSSION that the constant lead of the burst onset relative to saccade onset (approximately 27 ms) suggests that the BUNs may help to trigger the saccade.
منابع مشابه
The locus of motor activity in the superior colliculus of the rhesus monkey is unaltered during saccadic adaptation.
The location of motor-related activity in the deeper layers of the superior colliculus (SC) is thought to generate a desired displacement command specifying the amplitude and direction of saccadic eye movements. However, the amplitude of saccadic eye movements made to visual targets can be systematically altered by surreptitiously moving the target location after the saccade has been initiated....
متن کاملDischarge characteristics of single units in superior colliculus of the alert rhesus monkey.
ACCUMULATING EVIDENCE suggests that the superior colliculus plays an important role in orientation and eye movement. Ablation studies have shown that destruction of superior colliculi interferes with spatial orientation and eye movement (Z-29), although the evidence regarding the effects of such lesions in primates is conflicting (1, 7, 17, 18; and unpublished observations). Stimulation studies...
متن کاملExtraretinal inputs to neurons in the rostral superior colliculus of the monkey during smooth-pursuit eye movements.
The intermediate and deep layers of the monkey superior colliculus (SC) are known to be important for the generation of saccadic eye movements. Recent studies have also provided evidence that the rostral SC might be involved in the control of pursuit eye movements. However, because rostral SC neurons respond to visual stimuli used to guide pursuit, it is also possible that the pursuit-related a...
متن کاملAre gaze shifts controlled by a 'moving hill' of activity in the superior colliculus?
Are gaze shifts controlled by a 'moving hill' of activity in the superior colliculus? In his recent TINS article, Guitton 1 proposes that during the course of a saccadic gaze shift a neural image of gaze motor error moves across the superior colliculus (SC) of the head-free cat. Gaze motor error is a term used to describe the difference between the current direction of gaze and the desired dire...
متن کاملBehavioral enhancement of visual responses of prestriate neurons of the rhesus monkey.
Neurons in the superior colliculus, striate cortex, frontal eye fields, and posterior parietal cortex of the monkey respond to visual stimuli. Many of these cells discharge more intensely to a stimulus when it is to be the target for a saccadic eye movement than when fixation is maintained. We have demonstrated that such enhancement of the visual response is also present for cells in prestriate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 87 6 شماره
صفحات -
تاریخ انتشار 2002